如何求解矩阵的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/06 08:55:22
如何求解矩阵的特征值
知道一矩阵的特征值如何求它的逆矩阵的特征值

A^{-1}的特征值恰好是A的特征值的倒数事实上det(xI-A)=det(xA)det(A^{-1}-x^{-1}I)好好看教材吧,这种是基本问题,不会很不应该

如何求矩阵方幂的特征值

1.如果c是A的特征值,则存在非零向量X使AX=cX.于是(A^k)X=c^k·X,即得c^k是A^k的特征值.实际上,如果A的特征值为c1,c2,...,cn(包括重根),f(x)是任意多项式,可以

如何计算矩阵特征值

设此矩阵A的特征值为λ则|A-λE|=-λ100-λ1-1-3-3-λ第1行减去第3行乘以λ=01+3λλ²+3λ0-λ1-1-3-3-λ按第1列展开=1+3λ+λ(λ²+3λ)=

已知特征值和某个特征值的特征向量如何求矩阵特征值所属的矩阵?

这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值

请教各位大神,如何使用MATLAB求解一个矩阵的正特征值个数?非常感谢!

首先,eigs函数求出的不是所有特征值,而是幅值最大的6个特征值.求所有特征值应该用eig函数.其次,你所说的正特征值应该隐含条件就是不包括复数吧? 参考代码:A=rand(10,10);d

求解个矩阵的特征值和特征向量

第三题r(α1,α2,α3,α4)=4极大无关向量组α1,α2,α3,α4第四题由Aα=λα可得|Aα-λα|=0∴|A-λα|=0∴λ³-4λ²+λ-2=0λ=3.8751297

求解该矩阵的特征值和对应的特征向量

设特征值为t,特征向量为X,单位矩阵记为E,原矩阵记为A由特征值的定义,有AX=tX,即(tE-A)X=0我们知道特征向量是非零的.而上述方程要有非零解,必须满足(tE-A)不可逆(否则我们在方程两边

线性代数里 如何判断矩阵的特征值不等于0?

矩阵A的特征值不等于0|A|≠0A可逆Ax=0只有零解A的行(列)向量组线性无关.这都是等价的.再问:谢谢老师

Matlab求解矩阵最大特征值

max(D)是求出每一列最大的值,max(max(D))是要从这些每一列的最大值中再选出那个最大的,这样选出的这个值就是D中最大的那个了

matlab中如何求矩阵的特征值和特征向量

a=[11/4;41]a=1.00000.25004.00001.0000>>[v,d]=eig(a)v=0.2425-0.24250.97010.9701d=2000按照这道题的计算过程算就可以了,

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

如何证明正交矩阵的特征值为1或-1

设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量即有Ax=λx,且x≠0.两边取转置,得x^TA^T=λx^T所以x^TA^TAX=λ^2x^Tx因为A是正交矩阵,所以A^TA=E所以x^Tx

线数:特征值重复的矩阵,如何对角化?

一个矩阵能对角化的充分必要条件是存在n个线性无关的特征向量.所以你题目中的2阶矩阵若能对角化就要存在2个线性无关的特征向量.现在矩阵M的两个特征值相等,全为3设矩阵M的特征值为λ,存在非零向量x,使得

利用spss能否求解矩阵的特征值和特征向量?能否求解逆矩阵?

用matlab吧,更快,更方便.[L,P]=eig(m)---矩阵m的特征值和特征向量inv(m)-----矩阵m的逆矩阵

如何证明矩阵特征值方程

设K是矩阵A的特征值,X是对应K的矩阵A的非零的特征向量.则,AX=KX,(A-KI)X=0,若DET(A-KI)不等于0.则,方程(A-KI)X=0只有唯一的解X=0.与X非零矛盾.因此,DET(A

如何求矩阵的迹如题特征值=迹?

1.迹是所有对角元的和2.迹是所有特征值的和3.某些时候也利用tr(AB)=tr(BA)来求迹

什么是非奇异矩阵?什么是矩阵的特征值?特征值的求解步骤是怎么样的?

若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩阵,否则称A为奇异矩阵.设A是n阶方阵,如果存在数m和非零n维列向量 x,使得Ax=mx成立,则称m是A的一个特征值.Ax=mx,等

如何求矩阵的特征值

把线代矩阵那一章的书上习题先看熟了再问!再问:再问:话横线那一步怎么得出的再答:那么简单的三阶行列式你难道不会化吗?再问:那您说怎么化再答:再答:SoEasy啦,线代这本书一个礼拜都不用就可以精通了,

求解为什么互逆矩阵的特征值互为倒数

证明:设λ是A的特征值,α是A的属于特征值λ的特征向量则Aα=λα.若A可逆,则λ≠0.等式两边左乘A^-1,得α=λA^-1α.所以有A^-1α=(1/λ)α所以(1/λ)是A^-1的特征值,α是A