作业帮 > 综合 > 作业

已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(

来源:学生作业帮 编辑:搜搜考试网作业帮 分类:综合作业 时间:2024/05/29 08:58:07
已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(λ+1)yn+λyn-1≥0(�
已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(λ+1)yn+λyn-1≥0(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明xn+1-yn+1≤xn-yn(n∈N*);
(3)设0<λ<1,k∈N*,证明:(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk)<
1
(1?λ)
已知数列{xn},{yn}满足x1=y1=1,x2=y2=2,并且xn+1-(λ+1)xn+λxn-1=0,yn+1-(
(1)∵x1=1,x2=2,xn+1-(λ+1)xn+λxn-1=0,
∴x3=(λ+1)x2-λx1=2(λ+1)-λ=λ+2.
x4=(λ+1)(λ+2)-2λ=λ2+λ+2.
x5=(λ+1)(λ2+λ+2)?λ(λ+2)=λ32+λ+2.
∵x1,x3,x5成等比数列,∴
x23=x1?x5,
∴(λ+2)2=1×(λ2+λ+2),解得λ=-2.
(2)下面利用数学归纳法证明:
①当n=1时,x2-x1=2-1=y2-y1,∴x2-y2≤x1-y1成立;
②假设当n=k时,xk+1-xk≤yk+1-yk成立,即xk+1-yk+1≤xk-yk成立.
则当n=k+1时,∵λ>0,∴xk+2-xk+1=λ(xk+1-xk)≤λ(yk+1-yk)≤yk+2-yk+1成立,
即xk+2-yk+2≤xk+1-yk+1成立.
即命题定义n=k+1时也成立.
综上可知:命题定义任意n∈N*都成立.
(3)由xn+1-(λ+1)xn+λxn-1=0,可得xn+1-xn=λ(xn-xn-1),
∴xn?xn?1=(x2?x1)?λn?2=λn?2,
∴xn=(xn-xn-1)+(xn-1-xn-2)+…+(x3-x2)+(x2-x1)+x1
n-2n-3+…+λ+1+1=
λn?1?1
λ?1+1.(0<λ<1).
∴x2k=
λ2k?1?1
λ?1+1.
∴x2k-xk=
λ2k?1?λk
λ?1
∴左边=(x2-x1)+(x4-x2)+(x6-x3)+…+(x2k-xk
=
1
λ?1[(λ+λ3+…+λ2k-1)-(λ+λ2+…+λk)]
=
1
λ?1[
λ(λ2k?1)
λ2?1?
λk?1
λ?1]
=
1
1?λ
(1?λk)(1?λk+1)
1?λ2
=
1
(1?λ)2?
(1?λk)(1?λk+1)
1+λ<
1
(1?λ)2.=右边.
故不等式成立.