A是三阶实对称矩阵,r(A)=2,若A2=A,则A的特征值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/16 00:06:14
A是三阶实对称矩阵,r(A)=2,若A2=A,则A的特征值为
矩阵A为实矩阵,且(A^T)A=A(A^T).证明:A是对称矩阵.

这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?

设n阶实对称矩阵A的秩为r(r

可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不

矩阵r=r(A)什么意思

表示矩阵A的秩

设A为阶对称正定矩阵,给出一个算法求上三角形矩阵R,使A=R*R的转置,我怎么做都只能证明A=R的转置*R

令F=[e_n,...,e_1],也就是把单位阵的列反过来排那么A=RR^TFAF=(FRF)(FR^TF)再问:单位阵的列反过来还是原来的单位阵啊能不能把过程再说得详细些呀再答:F=00101010

A秩为r的n阶实对称矩阵证A是半正定矩阵充要条件是存在r行n列的秩为r的实矩阵B,使A=B'B

我们一步一步来.首先对于实数域上的列向量X,有X'X≥0,且等号成立当且仅当X=0.由这一点我们可以证明,对实矩阵B,有B'B的秩R(B'B)=B的秩R(B).方法是考虑两个线性方程组BX=0与B'B

已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)

因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等

高数题:设A是对称矩阵,C=BTAB,证明C也是对称矩阵

由已知,AT=A,所以,利用(ABC)T=(CT)(BT)(AT),CT=(BTAB)T=(BT)(AT)(BT)T=(BT)AB=C

A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.

这是因为"可对角化的矩阵的秩等于其非零特征值的个数"A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2由r(A)=2知A的特征值为0,-2,-2.所以A^2+3E的特征值为(λ^2+3):

B为m阶对称正定阵,P是秩为r的m*r型矩阵,P^TBP=A,证明:证明:A是对称正定阵.

1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P

三阶实对称矩阵,R(A)=2,A^2+2A=0,求特征值

设a是A的特征值,则a^2+2a是A^2+2A的特征值.而A^2+2A=0所以a^2+2a=0即a(a+2)=0所以A的特征值为0或2.因为R(A)=2所以A的特征值为:0,2,2.

设A是n阶实对称矩阵,证明r(A)=r(A^2)

证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

线性代数 设A为n(n>2)阶实对称矩阵,A^2=A,秩(A)=r

A^2=A,A的特征值是0和1.因为A是实对称矩阵,可对角化,所以A的秩就是对角化后非零主对角线元素的个数,所以A的特征值是r个1与n-r个0.所以2E-A的特征值是r个1与n-r个2,所以|2E-A

1. 设A为n阶对称矩阵,P为n阶可逆矩阵,证明B=(P^T)AP也是对称矩阵,且R(A)=R(B)

B^T=[(P^T)AP]^T=(P^T)A^TP=(P^T)AP=B所以B也是对称阵因为P是可逆阵,所以R(P)=n然后利用两个不等式:R(AP)>=R(A)+R(P)-n=R(A)+n-n=R(A

求n阶实对称幂矩阵A(A^2=A)的秩为r,求:行列式 I+A+A^2+.+A^n

你问的题还是有些份量的哈,哪来的题?解:第1步.设a是A的特征值.则a^2-a是A^2-A的特征值而A^2-A=0所以a^2-a=0,a(a-1)=0.所以a=0或1.第2步.因为实对称矩阵可对角化所

证明:对于实对称矩阵A,必有实对称矩阵B,使得A=B³.

做谱分解A=QΛQ^T然后取对角阵D使得D^3=ΛB=QDQ^T就满足条件再问:什么是谱分解啊?再问:什么是谱分解啊?再问:什么是谱分解啊?

线性代数问题A 是n阶实对称的幂等矩阵,(A^2=A,A^T=A),r(A)=r,计算|I+A+A^2+...+A^k|

因为A是n阶实对称的幂等矩阵所以A可对角化且A的特征值为1,1,...,1(r个),0,...,0所以I+A+A^2+...+A^k=I+kA的特征值为1+k,1+k,...,1+k(r个),k,..

线性代数:为什么三阶实对称矩阵A,R(A-2E)=1,所以2是A的二重特征值?

因为R(A-2E)=1所以A的属于特征值2的线性无关的特征向量有3-1=2个.而A是实对称矩阵,k重特征值有k个线性无关的特征向量所以2是A的二重特征值.

n阶实对称幂等矩阵A(即A2=A)它的秩为r,求标准型

设a是A的特征值则a^2-a是A^2-A的特征值因为A^2-A=0所以a^2-a=0所以a=1或a=0即A的特征值只能是1或0.又因为A为实对称矩阵,所以A必可正交对角化即存在正交矩阵T满足T^-1A