A^2-A-2E=0,证明A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/12 06:02:44
A^2-A-2E=0,证明A可逆
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.

A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,

证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,

方阵A满足A^2+A-I=0,证明:A可对角化

条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

已知A是方阵,A^2+2A+E=0,证明A+E可逆

因为A^2+2A+E=0所以(A+E)^2=0所以|A+E|=0所以A+E不可逆题目有误

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

高等代数 线性变换A^2=E,证明A可对角化

只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化

[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A

A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵

因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆

A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).

设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

若A^2=E,证明rank(A+E)+rank(A-E)=n

因为A^2=E所以A^2-E=0所以(A-E)(A+E)=0所以R(A-E)+R(A+E)=R(E-A+A+E)=R(2E)=n所以,综上所述rank(A+E)+rank(A-E)=n再问:这一步是怎

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

如果A^k=0,证明(E-A)^(-1)=E+A+A^2+.+A^(k-1).

只需证明(E-A)[E+A+A^2+.+A^(k-1)]=E,由于矩阵和单位矩阵E的乘法有可交换性,即AE=EA=A,因此乘法公式a^k-b^k=(a-b)[a^(n-1)+a^(n-2)b...+b

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因