如图所示 在竖直平面内有一个半径为R

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/05 11:13:52
如图所示 在竖直平面内有一个半径为R
如图所示,在竖直平面内有一条1/4圆弧形轨道AB,其半径为1m,B点的切线方...

先用动量守恒求(1),然后用机械能守恒求(2)好久没看物理书了

如图所示,在竖直平面内有轨道ABCDE,其中BC是半径为R的四分之一圆弧轨道,AB是竖直

注意到Q的速度是水平的,但是可以分解成两个方向:1.按照直杆的伸展方向2.按照直杆的转动方向这两个分速度是正交的同理,P的速度是与水平面呈60°角向下,也可以做类似的分解.而且二者直杆的伸展方向是速度

如图所示,一个3/4圆弧形光滑细圆管轨道ABC放置在竖直平面内,轨道半径R,

答案:(1)小球离开C点做平抛运动,落到M点时水平位移为R,竖直下落高度为R,根据运动学公式可得:g=1/2*gt^2运动时间t=根号2R/g从C点射出的速度为v1=R/t=根号gR/2设小球以v1经

如图所示,一个3/4圆弧形光滑细圆管轨道ABC放置在竖直平面内,轨道半径R,在A点与水平地面AD相接

mgh=mgR+1/2mv2指小球在C点,重力做功mgh-mgR,mgh=1/2mv2,是小球下落h到A的式子.重力做功与零势能无关

(2014•湛江二模)如图所示,竖直平面内有一个半径为R=0.8m 的固定光滑四分之一圆弧轨道PM,P&nbs

(1)设A刚滑上圆弧轨道的速度为vA,因为A刚好滑到P点,A上滑过程中机械能守恒,由机械能守恒定律得:12mAvA2=mAgR…①设A在M点受到的支持力为F,由牛顿第二定律得:F-mAg=mAv2AR

如图所示,竖直平面内有一个光滑绝缘的3/4圆形轨道BCDG,轨道半径为R,下端

再问:请问还有b滑块呢?在B点a,b正碰。而且说了b滑块碰后的速度和a滑块碰前的速度相同。再答:解题的目的是,求出答案,在本题中,看不出b的有关条件。所以,就不理它。题设中,并没有说,二者碰后,就成为

9、如图所示,竖直平面内固定有一个半径为R的光滑圆弧轨道,其端点P在圆心O的正上方,另一个端点Q与圆心O在同一水平面上.

Q点和P点的位置决定了这个圆弧轨道是一个扇形轨道(1/4圆),想想也知道不可能飞回到Q点的.因为P点到圆心和Q点到圆心的直线是垂直的,小球飞出的时候,应该是垂直于圆弧法线的,如果垂直于法线,怎么可能飞

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

一个半径R=1m的圆弧形光滑轨道固定在竖直平面内

到达B速度方向为切线方向,即与水平面成60度角所以竖直方向速度为Vy=根号3*Vx=4根号3m/s,由于v^2=2gh,所以h为2.4mmg(h+R-R*sin60)=1/2mVc^2-1/2mV0^

如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内,还有与xOy平

1.由于入射与c点,出射与o点并沿y轴负方向所以带电粒子正电荷,电场朝y轴正方向,磁场垂直于直面向外.由A到C匀速直线运动,mg=eq并且在圆内只相当于受到洛伦兹力则可知圆周运动半径为RR=mv/Bq

如图所示,一个光滑的水平轨道与半圆轨道相连接,其中半圆轨道在竖直平面内,半径为R,质量为m的小球以

小球通过轨道的最高点B后恰好做平抛运动:根据h=1/2gt²,落地时间t=√(2h/g)=√(2×2R/g)=2√(R/g)根据平抛运动的水平位移:L=vB×tB点速度:vB=L/t=2R/

8.如图所示,一内壁粗糙的环形细圆管,位于竖直平面内,环形的半径为R(比细管的直径大得多).在圆管中有一个直径比细管内径

这道题只要算出小球分别通过最低点和最高点时的动能,以及从最高点到最低年的重力势能改变量先算通过最低点时的速度.现在已知此时他对管壁的压力为6mg,换句话说就是管壁给了它6mg的支持力.通过受力分析可以

如图所示,在竖直平面内有一个半径为R,粗细不计的圆管轨道.半径OA水平、OB竖直,一个质量为m的小球自A正上方P点由静止

A、重力做功与路径无关,只与初末位置高度差有关,故WG=mgR,故A错误;B、小球恰能沿管道到达最高点B,得到B点速度为零;故小球从P到B的运动过程中,动能增加量为零;重力势能减小量为mgR;故机械能

在竖直平面内有一个半径为r的光滑圆形轨道,一个质量为m的小球

你这样想由于机械能守恒吧?在最高点,重力势能最大,动能是不是最小?速度是不是最小?所以,在运动中,球的速度V是大于等于根号下4rg/5的.时间等于路程除以速度,路程等于2πr,你把这个除以根号下4rg

如图所示,在竖直平面内有一条14圆弧形轨道AB,其半径为1m,B点的切线方向恰好为水平方向.一个质量为2kg的小物体,从

(1)设小滑块在AB轨道上克服阻力做功为W,对于从A至B过程,根据动能定理得:mgR−W=12mv2代入数据解得:W=4 J,即小滑块在AB轨道克服阻力做的功为4J.(2)物体在B点受到的支

如图,在一辆小车上距水平面高为h处有一个半径为R的四分之一圆弧轨道,圆弧位于竖直平面内,

1.小球落到B点时冲量全部转化为水平方向,对竖直方向没有冲量,所以对B点的压力为mg.2.根据动能守恒,对于小球有mgr=1/2mv2,所以小球落到B点时V=√2gr,根据动量守恒,2mv=mV,因此

半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一个重力为3mg、带正电的珠子,空间存在水平向右的匀强电场,如图所示.珠

再问:刚做出来的吗再答:额再问:感觉有点不对再问:4/5前面那个是什么再答:半径啊再问:噢噢,没看出来

226、如图所示,半径为r、质量不计的圆盘,盘面在竖直平面内,圆心处有一个垂直盘面的光滑水平固定轴O,圆盘可绕固定轴O在

1 ,3楼回答有问题:你说“当B处于最高点时,系统势能增加2mgr-mgr=mgr,应由动能转换而来”你忽略了圆盘有一个初始动能1/2MV^2.而你又在B到最高点时,默认了圆盘和球的最小速度