作业帮 > 数学 > 作业

awf aw实数aaaaaaaaaaaaaaaaaaaaaaaaaaaaad asfafwad wadw

来源:学生作业帮 编辑:搜搜考试网作业帮 分类:数学作业 时间:2024/06/13 08:43:19
awf aw实数
aaaaaaaaaaaaaaaaaaaaaaaaaaaaad asfafwad wadw
awf aw实数aaaaaaaaaaaaaaaaaaaaaaaaaaaaad asfafwad wadw
读音:shíshù 英语:real number
(一)数学名词.有理数和无理数的总称.
(二)确实的数字.【例】公司到底还有多少钱?请你告诉我实数!
[编辑本段]数学术语

[编辑本段]1、基本概念
实数包括有理数和无理数.其中无理数就是无限不循环小数,有理数就包括整数和分数.
数学上,实数直观地定义为和数轴上的点一一对应的数.本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”.
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类.实数集合通常用字母 R 或 R^n 表示.而 R^n 表示 n 维实数空间.实数是不可数的.实数是实分析的核心研究对象.
实数可以用来测量连续的量.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的).在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数).在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示.
①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a
②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:
|a|= ①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a
③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)
[编辑本段]2、历史来源
埃及人早在大约公元前1000年就开始运用分数了.在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性.印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度.
直到17世纪,实数才在欧洲被广泛接受.18世纪,微积分学在实数的基础上发展起来.直到1871年,德国数学家康托尔第一次提出了实数的严格定义.
[编辑本段]3、相关定义
从有理数构造实数
实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全.实数可以不同方式从有理数构造出来.这里给出其中一种,其他方法请详见实数的构造.
公理的方法
设 R 是所有实数的集合,则:
集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质.
域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z:
若 x ≥ y 则 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0.
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界.
最后一条是区分实数和有理数的关键.例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数).
实数通过上述性质唯一确定.更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的.
[编辑本段]4、相关性质
基本运算
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算.实数加、减、乘、除(除数不为零)、平方后结果还是实数.任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数.
完备性
作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
所有实数的柯西序列都有一个实数极限.
有理数集合就不是完备空间.例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限.实际上,它有个实数极限 √2.实数是有理数的完备化——这亦是构造实数集合的一种方法.
极限的存在是微积分的基础.实数的完备性等价于欧几里德几何的直线没有“空隙”.
“完备的有序域”
实数集合通常被描述为“完备的有序域”,这可以几种解释.
首先,有序域可以是完备格.然而,很容易发现没有有序域会是完备格.这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大).所以,这里的“完备”不是完备格的意思.
另外,有序域满足戴德金完备性,这在上述公理中已经定义.上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思.这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性.
这两个完备性的概念都忽略了域的结构.然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念.上述完备性中所述的只是一个特例.(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质.)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域.实际上,“完备的阿基米德域”比“完备的有序域”更常见.可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然).这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性.
“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思.他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域.这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域.这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域.
高级性质
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大).这一点,可以通过康托尔对角线方法证明.实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势.由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数.实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设.该假设不能被证明是否正确,这是因为它和集合论的公理不相关.
所有非负实数的平方根属于 R,但这对负数不成立.这表明 R 上的序是由其代数结构确定的.而且,所有奇数次多项式至少有一个根属于 R.这两个性质使 R成为实封闭域的最主要的实例.证明这一点就是对代数基本定理的证明的前半部分.
实数集拥有一个规范的测度,即勒贝格测度.
实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述.不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于 R,但也同样满足和 R 一样的一阶逻辑命题.满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型.这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在 R 中证明要简单一些),从而确定这些命题在 R 中也成立.
拓扑性质
实数集构成一个度量空间:x 和 y 间的距离定为绝对值 |x - y|.作为一个全序集,它也具有序拓扑.这里,从度量和序关系得到的拓扑相同.实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间.但实数集不是紧致空间.这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚.以下是实数的拓扑性质总览:
令 a 为一实数.a 的邻域是实数集中一个包括一段含有 a 的线段的子集.
R 是可分空间.
Q 在 R 中处处稠密.
R的开集是开区间的联集.
R的紧子集是有界闭集.特别是:所有含端点的有限线段都是紧子集.
每个R中的有界序列都有收敛子序列.
R是连通且单连通的.
R中的连通子集是线段、射线与R本身.由此性质可迅速导出中间值定理.
[编辑本段]5、扩展与一般化
实数集可以在几种不同的方面进行扩展和一般化:
最自然的扩展可能就是复数了.复数集包含了所有多项式的根.但是,复数集不是一个有序域.
实数集扩展的有序域是超实数的集合,包含无穷小和无穷大.它不是一个阿基米德域.
有时候,形式元素 +∞ 和 -∞ 加入实数集,构成扩展的实数轴.它是一个紧致空间,而不是一个域,但它保留了许多实数的性质.
希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数.