作业帮 > 英语 > 作业

拜托大家用英文写点关于转基因植物的东西给我!急

来源:学生作业帮 编辑:搜搜考试网作业帮 分类:英语作业 时间:2024/06/05 11:57:09
拜托大家用英文写点关于转基因植物的东西给我!急
明天就要用了!没有资料的话 直接到百度百科里去找几段翻译一下也行!
拜托大家用英文写点关于转基因植物的东西给我!急
Genetically modified plants are plants whose DNA is modified using genetic engineering techniques. In most cases the aim is to introduce a new trait to the plant which does not occur naturally in this species. Examples include resistance to certain pests, diseases or environmental conditions, or the production of a certain nutrient or pharmaceutical agent.
Genetically engineered plants are generated in a laboratory by altering the genetic makeup, usually by adding one or more genes, of a plant's genome using genetic engineering techniques. Most genetically modified plants are generated by the biolistic method (particle gun) or by Agrobacterium tumefaciens mediated transformation.
In the biolistic method, DNA is bound to tiny particles of gold or tungsten which are subsequently "shot" into plant tissue or single plant cells under high pressure. The accelerated particles penetrate both the cell wall and membranes. The DNA separates from the metal and is integrated into the plant genome inside the nucleus. This method has been applied successfully for many cultivated crops, especially monocots like wheat or maize, for which transformation using Agrobacterium tumefaciens has been less successful.The major disadvantage of this procedure is that serious damage can be done to the cellular tissue.
Agrobacteria are natural plant parasites, and their natural ability to transfer genes is used for the development of genetically engineered plants. To create a suitable environment for themselves, these Agrobacteria insert their genes into plant hosts, resulting in a proliferation of plant cells near the soil level (crown gall). The genetic information for tumour growth is encoded on a mobile, circular DNA fragment (plasmid). When Agrobacterium infects a plant, it transfers this T-DNA to a random site in the plant genome. When used in genetic engineering the bacterial T-DNA is removed from the bacterial plasmid and replaced with the desired foreign gene. The bacterium is a vector, enabling transportation of foreign genes into plants. This method works especially well for dicotyledonous plants like potatoes, tomatoes, and tobacco. Agrobacteria infection is less successful in crops like wheat and maize.
Genetically modified plants have been developed commercially to improve shelf life, disease resistance, herbicide resistance and pest resistance. Plants engineered to tolerate non-biological stresses like drought , frost and nitrogen starvation or with increased nutritional value (e.g. Golden rice[30]) were in development in 2011. Future generations of GM plants are intended to be suitable for harsh environments, produce increased amounts of nutrients or even pharmaceutical agents, or are improved for the production of bioenergy and biofuels. Due to high regulatory and research costs, the majority of genetically modified crops in agriculture consist of commodity crops, such as soybean, maize, cotton and rapeseed.However, commercial growing was reported in 2009, of smaller amounts of genetically modified sugar beet, papayas, squash (zucchini), sweet pepper, tomatoes, petunias, carnations, roses and poplars. Recently, some research and development has been targeted to enhancement of crops that are locally important in developing countries, such as insect-resistant cowpea for Africa and insect-resistant brinjal (eggplant) for India.
In research tobacco and Arabidopsis thaliana are the most genetically modified plants, due to well developed transformation methods, easy propagation and well studied genomes.They serve as model organisms for other plant species. Genetically modified plants have also been used for bioremediation of contaminated soils. Mercury, selenium and organic pollutants such as polychlorinated biphenyls (PCBs) have been removed from soils by transgenic plants containing genes for bacterial enzymes
Transgenic plants have genes inserted into them that are derived from another species. The inserted genes can come from species within the same kingdom (plant to plant) or between kingdoms (bacteria to plant). In many cases the inserted DNA has to be modified slightly in order to correctly and efficiently express in the host organism. Transgenic plants are used to express proteins like the cry toxins from Bacillus thuringiensis, herbicide resistant genes and antigens for vaccinations
Cisgenic plants are made using genes found within the same species or a closely related one, where conventional plant breeding can occur. Some breeders and scientists argue that cisgenic modification is useful for plants that are difficult to crossbreed by conventional means (such as potatoes), and that plants in the cisgenic category should not require the same level of legal regulation as other genetically modified organisms.
In research plants are engineered to help discover the functions of certain genes. One way to do this is to knock out the gene of interest and see what phenotype develops. Another strategy is to attach the gene to a strong promoter and see what happens when it is over expressed. A common technique used to find out where the gene is expressed is to attach it to GUS or a similar reporter gene that allows visualisation of the location.
The first commercialised genetically modified plants (Flavr Savr tomatoes) used RNAi technology, where the inserted DNA matched an endogenous gene already in the plant. When the inserted gene is expressed it can repress the translation of the endogenous protein. Host delivered RNAi systems are being developed, where the plant will express RNA that will interfere with insects, nematodes and other parasites protein synthesis. This may provide a novel way of protecting plants from pests.
以上是取自维基百科的原版介绍,内容绝对科学,英语绝对地道.如果您嫌太长了的话,可以适当的摘取部分即可.