证明A*2–2A 2E正定

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/25 13:03:14
证明A*2–2A 2E正定
设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵

(1)设λ是A在复数域内的一个特征值,X是属于λ的特征向量(未必是实向量),即有AX=λX.用B*表示B的复共轭的转置,由A是实对称矩阵,有A*=A.考虑1×1矩阵X*AX,可知(X*AX)*=X*A

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

证明 正定矩阵问题:设A为n阶实对称阵,且A^2-5A+6E=0,求证A是正定矩阵~时间紧急,麻烦给出详细解答,谢谢!

特征方程吗!x^2-5x+6=0所以特征值为x1=2,x2=3,x3=2或者3特正直都是正数,一定正定了...

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

A为3阶对称矩阵,|A|>0,而且2E-A,3E-A都不可逆,证明:A是正定的

A为三阶方阵,所以最多只有三个特征值.2E-A,3E-A都不可逆,所以|2E-A|=0=|3E-A|,即A有两个特征值为2,3,另外|A|为三个特征值乘积,所以假设还有一个特征值为x,那么6x=|A|

证明若A是n阶正定矩阵,则存在n阶正定矩阵B,使A=B^2

如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,

证明:如果a是n阶正定矩阵,则a*及a+a*也是正定矩阵

1、对称性显然2、a*=|a|a^(-1)3、a正定则特征值全为正,从而a^(-1)的特征值为正4、容易看出a*,a+a*的特征值为正,正定

证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2

正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得A=O'diag{a1,a2,...,an}O,再由A正定知对角元全为正数,即a1,a2,...,an>0.令b1=√a1,b2=√a2,

求助已知A是n阶正定矩阵,B是n阶反对称矩阵,证明A-B^2也为正定矩阵.

对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...

设A为n阶反对陈矩阵,则E-A^2为正定矩阵,请证明之.

先约定符号矩阵A的转置记为AT已知:A是反对称阵,即AT=-A想要证明矩阵E-A^2为正定阵,首先要说明它是对称阵:矩阵E-A^2=E+A×(-A)=E+A×AT,这是一个对称阵,可以证明E+A×AT

设A是n阶正定矩阵,证明:|A+2E|>2^n

我来回答, 请点击看大图

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

已知A是实反对称矩阵,证明I-A^2为正定矩阵

这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

假设A是sXn矩阵.证明:存在半正定sXs Hermite矩阵B,使得A*(A^H)=B^2 .(A^H) 为A的共轭转

A*(A^H)是Hermite半正定矩阵,用一下谱分解定理直接就出来了.

证明设矩阵A是正定矩阵,证明A-1次方也是正定矩阵

你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���

线性代数正定性问题(1)设A是n阶实矩阵,证明A^TA+E正定(2)设A是n阶是对称矩阵,证明A^2+A+E正定

证明:(1)对任意非零n维列向量x,x^Tx>0且(Ax)^T(Ax)>=0所以x^T(A^TA+E)x=(Ax)^T(Ax)+x^Tx>0所以A^TA+E正定.(2)设λ是A的特征值,则λ为实数且λ

证明正定矩阵[-1 0 0,0 2 0,0 0 0]证明A+2E是正定矩阵

证明:因为[-100,020,000]所以A的特征值为-1,2,0所以A+2E的特征值为2-1=1,2+2=4,2+0=2所以A+2E是正定矩阵.[注:A是正定的A的特征值都大于0]

证明:(半)正定矩阵A都可以写成另一个(半)正定矩阵B的平方,即A=B^2

A(半)正定,则A对称.设A的特征值分解为A=QDQ^T,其中Q是正交阵,D是对角阵,D=diga(d1,d2,...,dn).由于A(半)正定,故D(半)正定,于是di>0(di>=0),1=0),