n重特征值与秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/23 20:49:15
n重特征值与秩
设A为n阶矩阵,证明A的转置与A的特征值相同.

A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A

AB都是n阶矩阵,且A可逆,证AB与BA有相同特征值

因为A可逆所以A^-1(AB)A=BA所以AB与BA相似所以AB与BA有相同的特征值.

A是m×n矩阵,m>n,求证AA′有m个特征值与A′A相同,并且AA′其余的特征值为0

此题用到结论:r(A)=r(A'A)=r(AA')那么我们只需证明A'A与AA'有相同的非零特征值就行了.设b(lamda)是A'A的非零特征值,x是A'A的属于特征值b的特征向量,则有A'Ax=bx

线性代数 特征值与特征向量

先说一下,这张不难,题目都比较固定.真正难的是向量,不过自考不怎么考以这个题目为例:先写出特征多项式,然后求特征值,这一段你都会了然后就是回到上一步,就是你求特征多项式的那步λ-13-3-3λ+5-3

A,B是n阶方阵,求证:AB 与 BA有相同的特征值.

LS的..由于A不一定可逆,所以AB~A^{-1}(AB)A=BA的解答有缺陷详细解答请见下图注意关于特征值是否为零的分类讨论是必要的

若λ为A的k重特征值如果A是n阶矩阵 k是A的m重特征值 则属于k的线性无关的特征向量的个数不超过m个.其中 k是A的m

重特征值的意思就是特征多项式的重根.举个例子,有一个三阶矩阵A,400031013它的特征值多项式为(4-λ)(λ²-6λ+8)=(2-λ)(4-λ)²其中λ=4是2重根,我们就说

线性代数 特征值与特征向量?

合同的矩阵的规范形是相同的,书中的证明基于此你给出的不是规范形而是标准形事实上,由于规范形相同正负惯性指数相同A与A^-1有相同的正负特征值个数,所以它们对应的规范形相同

n阶矩阵的特征值问题1:假设,λ1是n阶实矩阵A的一重特征根,能否证明 秩(λ1E-A)=n-1呢?并请说明原因.2:假

A可对角化,则A=P^(-1)λP则(λ1E-A)=λ1E-P^(-1)λP=P^(-1)(λ1-λi)P说明:λ为A对角化后的对角矩阵.P为对应的特征向量,(λ1-λi)表示:对角线上分别是λ1-λ

n阶矩阵A与B有相同特征值,且n个特征值互不相同能否说明A与B相似?相同的行吗?

A与B相似并不相同,理由如下:1.A与B矩阵都有n个互不相同的特征值,说明了A和B都是非退化(nondefective)矩阵,即存在非奇异矩阵Q1和Q2使得:Q1^-1*A*Q1=D1、Q2*B*Q2

对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩

设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所

n阶非零矩阵A只有特征值0 那么0是A的n重特征值么?

是.n阶矩阵有n个特征值,重根按重数计

n阶矩阵A的秩为n-1,求A的伴随矩阵的特征值与特征向量

(A)=n-1,则r(A*)=1.此时A*A=|A|E=0所以A的非零列向量都是A*的属于特征值0的特征向量再问:我看答案特征值是0和对角线上元素的代数余子式的和,就是A11+A22+……Ann请问这

设A为n阶矩阵,证明A的转置与A的特征值相同

(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.

n阶矩阵A^2=A,r(A)=r,为什么λ=1是r重特征值,0是r重特征值

这题0是n-r吧再问:0是n-r,打错了不过已经知道了^_^

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

线性代数,什么是单重特征值

就是特征多项式方程det(kE-A)=0中含有x-k1的因子次数为1,k1为A的某个特征值

如果一个n阶矩阵,它的特征值是2n-1,n-1(n-1重),为什么特征值不为零呢?n可以等于1啊?

若n=1,1阶矩阵只有一个特征根,怎么会有2n-1=1和0两个特征根呢?

当λ是k重特征值,λ的线性无关的特征向量的个数与秩r(λE-A)的关系(我大一,刚学完二次型)

其实,这个问题与λ是k重特征值没有什么关系.当然了,λ必须是特征值才行.若λ是A的特征值,则存在x不等于0,使得Ax=λx.也就是说(λE-A)x=0存在非零解.事实上,上述方程的非零解就是λ的特征向

对于非零矩阵A,A的k次方等于零矩阵,则0为A的k重特征值还是n重特征值!

如果n是矩阵A的阶数,那么0是A的n重特征值,k和重数没有什么关系再问:n为A的阶数,为啥呢,我觉得只有k重是零根,剩下的不一定是零根呢再答:如果A满足多项式f(A)=0,那么A的任何特征值λ都满足f