若方阵A^2=A,A不是单位方阵,那么A为零矩阵吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 11:44:32
若方阵A^2=A,A不是单位方阵,那么A为零矩阵吗
设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n

因为A=A^2所以A(A-E)=0\x0d所以r(A)+r(A-E)≤n.\x0d参:\x0d\x0d又n=r(E)=r(A+E-A)≤r(A)+r(E-A)=r(A)+r(A-E)\x0d参:\x0

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设a*是三阶方阵a的伴随矩阵,若|a|=2,则||A|A*|=?

可用行列式的性质如图计算,答案是32.经济数学团队帮你解答,请及时采纳.

设A*是三阶方阵A的伴随矩阵,若|A|=2,则秩R(A*)=?

3,A*也是满秩的因为A可逆,所以A*A=|A|E,也就是说A为A*的逆,所以A*也是满秩的

设A是n阶方阵,E是n阶单位阵.证明:如果A方等于A,则秩A+秩(A-E)=n

因为A^2=A所以A(A-E)=0所以0=R(A(A-E))≥R(A)+R(A-E)-n故R(A)+R(A-E)≤n又R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n所以

线性代数中秩的证明设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵

由A^2=A,得A^2-A=0,(A-E)A=0.两n阶矩阵乘积为零矩阵,则两矩阵秩之和不大于n,故由(A-E)A=0得,R(A-E)+R(A)≤n.两矩阵之和的秩不小于两矩阵秩之和,故由(E-A)+

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

已知n阶方阵A,满足A^3+A^2-2A=0,I是n阶单位阵,证明矩阵A+I必可逆

A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)

若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A-4E|=0,则|A|=?其中E为单位阵.

说明A的三个特征值分别是-2,-1/2,4/3.所以|A|=三个特征值相乘.

线性代数选择 若A方=2E(为阶方阵),则.

则已知,|A|^2=|2E|=2^n所以|A|=±√2^n(C)正确

n阶方阵A满足A^3-2A+3E=0(E为n阶单位阵),则A^(-1)=?

2A-A^3=3EA(2E-A^2)=3EA(2E/3-A^2/3)=E所以,A逆=2/3×E-1/3×A^2

已知A是n阶方阵,且满足(A-E)^2=2(A+E),E是n阶单位矩阵,则A^-1=?

(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(

若5阶方阵A的伴随矩阵A*,且|A|=2,则|A*|=

AA*=|A|E两边取行列式:|A||A*|=|A|^n所以|A*|=|A|^n/|A|=|A|^n-1=2^4=16.

设n阶方阵A满足A⌃2 = A,证明:A或者是单位矩阵,或者是不可逆矩阵

要这样来理解把矩阵分为两类讨论,第一类是单位阵(这类显然),第二类不是单位阵(这类的目标是证明不可逆),在第二类中使用反证法.反证法的讲法存在一步逻辑跳跃,不过这步太显然了,不算是什么问题.

线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值

设a是A的任一一个特征值,则a^2-3a+2=0,从而a=1或2.进而A的特征值为1和2.

设方阵A满足A²-2A-E=0,证明A可逆,并求A的负一次方

因为A2-2A等于E,两边同时取行列式,就有(A的行列式)*(A-2E的行列式)=1,说明A的行列式≠0说明A可逆,而且A的逆矩阵是A-2E

已知2阶方阵A的特征值为x=1,y为负三分之一.方阵B=A的二次方,求B的特征值和行列式

A的特征值为1,-1/3所以A^2的特征值为1,(-1/3)^2=1/9所以|A^2|=1x(1/9)=1/9

A为n阶方阵,I为n阶单位矩阵,若A^2=A且A不等于I.证明A必为奇异矩阵

用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立