绕y轴旋转生成椭球面3x^2 2y^2 3z^2=1 的曲线方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/25 04:00:03
绕y轴旋转生成椭球面3x^2 2y^2 3z^2=1 的曲线方程是
求椭球面x^2+2y^2+3z^2=21上某点处的切平面的方程,该切平面过已知直线:(x-6)/2=y-3=(2z-1)

见图再问:"即xx0+2yy0+3zz0=21"是怎么来的哦?还有倒数第二行可以帮着弄成两行吗???谢谢

求椭球面x^2+2y^2+x^2上平行于平面x-y+2z=0的切平面方程

椭球面f(x,y,z)=x^2+2y^2+z^2;əf/əx=2x;əf/əy=4y;əf/əz=2z;即椭球面f(x,y,z)的切平面法向

求曲线x^2+z^2=3 y=1绕y轴旋转一周所成的旋转面方程

题目有问题.请更正!x^2+z^2=3y=1是一个圆,y轴垂直它所在平面,旋转了不是曲面

为什么要脱离出一个大地水准面和一个旋转椭球面?

大地水准面的形状实际上是不规则的,是一个重力等位面,海平面也不是规则椭圆.为了便于计算,模拟大地形状拟合出一个椭球体.具体你可以百度“大地水准面”和“参考椭球体”.

球由曲线y=lnx、x=e、y=0围城的图形绕y轴旋转生成旋转体的体积

是个环形物体.上限是1,下限是0围成图形的曲线是y=lnxx=e^y以及x=e体积V=π∫(0到1)[(e)²-(e^y)²]dy=π∫(0到1)[e²-e^(2y)]d

求由椭圆方程绕X轴旋转一周而成的旋转体(称旋转椭球体)的体积

所求体积=2∫πb²(1-x²/a²)dx=2πb²[x-x³/(3a²)]│=2πb²(a-a/3)=4πab²/3.

求圆(x-5)^2+y^2=16绕y轴旋转一周生成的旋转体的体积

答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16

椭球面 和 旋转椭球面 有何区别?

椭球面在每个坐标平面上的投影都是椭圆,你可以用它的方程去验证.而旋转椭球面是可以用一个椭圆绕对称轴旋转得到,所以它在某个坐标平面上的投影是个圆,通过分析它们的方程你回发现的.他们的方程形式是一样的,也

求曲线y=lnx,直线x=1,y=1所围成平面图形的面积极以其绕x轴旋转一周所生成...

所围成平面图形的面积=∫(1-lnx)dx=x(1-lnx)│+∫dx(应用分部积分法)=-1+(e-1)=e-2绕x轴旋转一周所生成的体积=∫π(1-ln²x)dx=π[x(1-ln

将XOZ坐标面上的抛物线Z(平方)=5X,y=0,绕X轴旋转一周,求所生成的旋转曲面的方程.

将XOZ坐标面上的抛物线Z(平方)=5X,y=0,绕X轴旋转一周,求所生成的旋转曲面的方程.--旋转时,由于x坐标没变,故仍为x,而原曲线上某一点饶x轴时,其到x轴距离为根号下y^2+z^2(其实等于

求旋转椭球面3x^2+y^2+z^2=16上点(-1,-2,3)处的切平面方程和法线方程.求详细过程~~

椭球面某点的法向量可以表示为n=(3x,y,z)所以M(-1,-2,3)处的法向量n0=(3,2,-3)所以切平面为3(x+1)+2(y+2)-3(z-3)=0化简为3x+2y-3z+16=0法线方程

xoy平面上的双曲线4x^2-9y^2=36绕y轴旋转一周所生成的旋转曲面方程是________

答:是4(x²+z²)-9y²=36绕x轴的话,就是将y²写成y²+z²绕y轴的话,就是将x²写成x²+z²x

求由曲线y=x²与x=y²所围成图形绕x轴旋转一周所生成的旋转体体积.

围成的图形是0到1之间的像一片叶子一样的图根据旋转体的体积公式V=∫(0→1)π[(√x)²-(x²)²]dx=π∫(0→1)(x-x^4)dx=π(x^2/2-x^5/

旋转椭球面x^2+y^2+4z^2=9被平面x+2y+5z=0截得椭圆,求该椭圆的长半轴与短半轴

首先确定椭圆的中心,因为椭球面的中心在原点O,平面也过原点O,所以椭圆的中心也在原点O根据题意,只要求出椭圆上到中心O的距离d^2=x^2+y^2+z^2的最大值和最小值即可.根据条件极值的求法,设P

求平面x=2与椭球面x^2/16+y^2/12+z^2/4=1相交所得椭圆的半轴与顶点

把x=2代入椭球面方程得1/4+y^2/12+z^2/4=1,y^2/12+z^2/4=3/4,两边都乘以4/3,得y^2/9+z^2/3=1,∴椭圆的长半轴=3,短半轴=√3,顶点为(2,土3,0)

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点