线性代数正交矩阵基础系解

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/06 01:35:00
线性代数正交矩阵基础系解
关于线性代数 正交矩阵的问题

令A=入-2202入-1202入,要带中括号.|A|=(入-2)(入-1)入+2*2*0+0*0*2-(入-2)2*2-2*2*入-0*(入-1)*0=(入-1)(入^2-2入)-8*(入-1)=(入

线性代数.已知最简行阶梯矩阵如何求基础解系?

x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R

线性代数实对称矩阵特征向量正交

①书上的基本定理肯定是没问题的;②a,b分别是A的特征值-2,2的对应的特征向量a,b是B特征值为1的特征向量【到此都没问题,问题在下面】③【注意:】此时求得矩阵B的特征值为1的特征向量为(1,1,0

线性代数,特征值正交矩阵相关.

此乃施密特正交化公式.取β2=α2+kβ1,则β1^Tβ2=β1^Tα2+kβ1^Tβ1=0,得k=-(β1^Tα2)/(β1^Tβ1)(向量转置表示)即k=-(α2,β1)/(β1,β1),(向量内

线性代数!正交矩阵,

正交阵的每行每列都是单位向量看第一列得a=0,看第二行得c=0再看第一行得b=-1然后d=0e=-cosθ当然,如果你要硬碰硬地去算AA^T=A^TA=I结果也是一样的,只是麻烦一点而已再问:e=-c

线性代数之正交矩阵, 

HHT=(E-2aaT)(E-2aaT)T=(E-2aaT)(E-2aaT)=E-4aaT+4a(aTa)aT=E所以H正交BT=(E-A)T[(E+A)^-1]T=(E-A)T[(E+A)T]^-1

线性代数 矩阵求基础解系的问题

|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

线性代数中的正交矩阵4

根据特征方程|λE-A|=0(E为单位矩阵),解得矩阵A的特征值分别为:λ1=8,λ2=λ3=2(二重特征值)把λ1=8代入特征方程,由(8E-A)x=0,解得对应λ1=8的特征向量为x1=(1,1,

线性代数正交矩阵 

再答:不是两个矩阵相等再问:谢谢明白再答:

线性代数矩阵正交,二乘法疑问

“实际期望的解”是一个主观的模糊的概念"最小二乘解"是最小化欧氏距离下的误差的解,同时也是一个残量正交化的解,这是一个精确的数学概念,但是这与最小二乘解是不是你想要的解没有任何关系在一般的空间里(包括

线性代数,正交矩阵. 

A为正交矩阵,∴A*A‘=E(E为单位矩阵)∴|A|*|A’|=|E|=1∴|A|²=1∴|A|=1或-1再问:看不懂啊,A一撇是什么意思,能不能写纸上,照个相呢。再答:A一撇表示A的转置

线性代数求正交矩阵中基础解系

把矩阵求阶梯型第二行加到第一行第三行加到第四行第二行的-1倍加到第三行变成0000三行为0有3个自由未知量所以ζ1=(2,1,1,0)1-1-11ζ2=(0,1,0,1)0000ζ3=(0,0,1,1

线性代数正交矩阵问题

利用列向量的单位正交性质经济数学团队帮你解答.

矩阵的正交 基础解系方面的问题(有图)

基础解系没有必要正负,只需一个向量就可,有正负意思应该是正负都可成为基础解系.后面的单位向量当然都应有正负.再问:哦谢谢了,那请问考试的时候只写正负的其中一个有关系吗会扣分吗还有就是什么时候应该写正负

线性代数正交矩阵的问题

因为Q若是正交矩阵,它的逆就是它的转置.这是正交矩阵的特性

线性代数正交矩阵

这里的条件应为:A的列向量都为单位向量且两两正交,单位向量是指向量的模为1,例如A的第一列向量为1/2,1/2,1/根2,0的模=根号(1/2的平方+1/2的平方+1/根2的平方+0的平方)=1,向量

线性代数 正交矩阵是否是对称矩阵?

不是再问:可问题是:假设用A'表示A的转置因为|A|^2=|A||A|=|AA||A|^2=|A||A'|=|AA'|=|E|A的逆=A'所以AA=E,A的逆=A=A‘,对称矩阵!如何解释?再答:得不