Dn=det(ij),其中a(ij)=绝对值i-j

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/11 08:05:46
Dn=det(ij),其中a(ij)=绝对值i-j
设4阶矩阵A满足det(3I+A)=0,AA^T=2I,det(A)

由AA^T=2I等式两边取行列式得|A|^2=|AA^T|=|2I|=2^4=16由det(A)

MATLAB求和程序F(j)=∑B(ij)/(1/n∑∑B(ij)) 其中B(ij)为42阶方阵,i j都是下标 因为我

sum=0;fori=1:42forj=1:42sum=sum+b(i,j);endendforj=1:42sumii=0;fori=1:42sumi(j)=sumii+b(i,j);f(j)=sum

线性代数证明题:矩阵An满足A(ij)=-A(ij),且n为奇数,证明det(A)=0

应该是A(ij)=-A(ji)吧,即有A'=-A∴|A|=|A'|=|-A|=(-1)^n|A|n为奇数,∴|A|=-|A|即|A|=0再问:谢谢你的解答!能再帮我解答一题吗?是要证明一组多项式{t^

设矩阵A,B,已知det(A)=2,det(B)=-7,求det(A+B)的值

A+B的行列式的值是不确定的还有别的条件吗A+B=x1+y12b1x2+y22b2=2*x1+y1b1x2+y2b2=2*x1b1x2b2+y1b1y2b2=2*(|A|+|B|)=2(2-7)=-1

设A,B都是n阶实矩阵,其中A正定,B半正定.证明:det(A+B)>det(A)

首先,由A正定,存在正定矩阵C使A=C².这个用可对角化证明:由A为实对称阵,存在正交阵T使T^(-1)AT为对角阵.又A正定,故T^(-1)AT的对角线上均为正数(特征值>0).故存在对角

线性代数,求一道行列式题?D = det(@ij),@ij = | i - j | ; 求它的结果?

答案是(-1)的n+1次方再乘以(n-1)*(2的n-2次方)所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,

设矩阵A=(a ij)3*2,B=(b ij)2*3,且b ij= a ji,i=1,2;j=1,2,3;试求B.谁能给

这有什么好解的,bij=aij说明B=A^T(A的转置)B=a11a21a31a12a22a32

A,B为5阶矩阵,det(A)=1/3,det(B)=2,则||B|A|=?

根据行列式的性质可得||B|A|=|B|^5|A|=(2^5)(1/3)=32/3.再问:能问一下为甚麽会出现2的5次方吗?解释的详细一点可以吗?再答:|B|A=2A就是用2去乘矩阵的每一个元素,这样

线性代数 a=a(ij)3*3方阵|A|=6 |2A|值为

根据方阵的性质:|λA|=λ^n|A|其中的n是指方阵的行数或者列数.所以这题答案是48.

设A为5阶矩阵,且det A=3,求det(AA^T)和det(A^*)

det(AA^T)=det(A)det(A^T)=9det(AA^*)=det(det(A)E)det(A^*)=[det(A)]^4=81再问:第二个是多少啊,算不出来么再答:det(A^*)=[d

A是n阶矩阵,a是向量,求证det(aA)=a^n×det(A)

对于n阶矩阵A而言,一个数λ乘A是λ乘A中的每个元素.从行列式而言,可以从一行(或一列)提取公因子到行列式外面计算,这样从每一行都提出公因子λ后,一共提出了n个λ相乘.

行列式问题,det(a ij)是什么?如图

det就是行列式的缩写记号,表明该行列式由元素aij组成再问:哦哦,明白了~谢谢

代数余子式一个定理求解:一个n阶行列式,如果i行或j列除a(ij)外都为零,则D=a(ij)A(ij)

就是a(ij)和它的代数余子式A(ij)相乘,aij就是i行或j列不等于0的那个元素嘛.

线性代数的问题计算行列式(Dk为k阶行列式)Dn=det(aij),其中aij=|i-j| 请写出具体步骤

所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.

关于分块矩阵行列式的问题:det(A+I)=det(A)?

计算错误[I-I,OI].[(A+I)O,OI].[IO,II]=[A-I,II].不是[I-I,OI].[(A+I)O,OI].[IO,II]=[AO,II].

三阶矩阵A满足det(A-I)=det(A-I)=det(3A+2I)=0

det(A-I)=det(A-I)?自己等于自己?再问:det(A-I)=det(A+2I)=det(3A+2I)=0打错了~再答:det(A-sI)=0是一个关于s的三阶方程,根据上面式子可以得到它

detA+detB=det(A+B)吗

A=【10;01】B=-A=【-1=;0-1】det(A+B)=0detA+detB!=det(A+B)

1.A、B均为n阶方阵,则必有A.det(A)det(B)=det(B)det(A) B.det(A+B)=det(A)

A、B均为n阶方阵,则必有det(A)*det(B)=det(AB)=det(B)det(A),因而选A而(A+B)的转置是等于A的转置加B的转置.对于B:举个例子可知是错的:A={10,01},B=