已知a,b属于R,a>b,若2a²-ab-b²-4=0,则2a-b的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/10 03:19:14
已知a,b属于R,a>b,若2a²-ab-b²-4=0,则2a-b的最小值为
已知:a,b属于R+,且a不等于b,求证:2ab/(a+b)

我补充一下因为a+b减去二倍根号ab等于(根号a+根号b)平方大于等于0所以a+b大于二倍根号a

基本不等式证明已知a,b,c属于R+(正实数),求证1/2(a+b)^2 + 1/4(a+b)大于等于 a根号b+b根号

a√b+b√a=√ab*(√a+√b)由基本不等式得:√ab≤(a+b)/2所以a√b+b√a≤(a+b)*(√a+√b)/2≤[(a+b)^2+(√a+√b)^2]/4=[(a+b)^2+2√ab+

已知a,b,m属于R+,并且aa/b

(a+m)/(b+m)=[a+(a/b+(b-a)/b)m]/(b+m)=(a+am/b)/(b+m)+(b-a)/bm(b+m)=(a/b)(b+m)/(b+m)+(b-a)/bm(b+m)=a/b

已知a,b属于R,2a+ab+a=30求ab/1最小值

ab=30-3a因为ab属于R开平方之后ab的平方是正数或者0所以30-3a的平方也是正数或者0a小于等于10b=(30-3a)/a或者a(3+b)=30由于a最大为10所以b大于等于0b的最小值为0

已知a,b属于R+,且ab(a+b)=16,求a^2+b^2的最小值.

不一定要用均值不等式的,用均值不等式的方法楼上已经写了,再提供一个方法供你参考,ab(a+b)=16a,b属于R+,令ab=ma+b=n,则mn=16a,b是方程x^2-nx+m=0的两根.n^2≥4

已知abc属于r求证a\b+c+b\c+a+c\a+b>=3/2

等下再问:求证对任意正整数n>1有1/根号1加上1/根号2加到1/根号n>根号n

a b 属于R a(a+b)

充分不必要

已知A,B属于R.证明 A平方+B平方大于等于A+B+AB-1

(1)配方2(a^2+b^2)-2(ab+a+b-1)=(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=(a-b)^2+(a-1)^2+(b-1)^2>=0(2)判别式令f(a

已知ab属于R求证2a^2+2b^2+1/3>a+b

证明:原不等式等价于:2a^2+2b^2-a-b-1/3>02(a^2-a/2+1/16)-1/8+2(b^2-b/2+1/16)-1/8+1/3>02(a-1/4)^2+2(b-1/4)^2+1/1

已知a,b属于R,集合{1,a+b,a}={0,a分之b,b},则b-a=

可以先看集合A中的元素,谁能和0对应,分类:1)当a+b=0时,得b=-a,所以只能是b=1,b/a=a得a^2=1,d故a=-1,a=1(舍)2)当a=0时,有:a+b=b,b/a=1解得,a=0(

a、b属于R |a|+|b|

【反证法】.设m,n是方程两根,且|m|≥1.由韦达定理知,m+n=-a,mn=b.(1)|m|≥1.===>|mn|≥|n|.===>|b|≥|n|.(2).m=-(a+n).==>|a+n|=|m

已知复数z=a+bi,a.b.属于R,若|z+2|=3.则b-a的最大值

|z+2|=|(a+2)+bi|=3即(a+2)²+b²=9是一个圆心为(-2,0)半径为3的圆然后求b-a的最大值一种方法是设a=3cosθ-2,b=3sinθb-a=3sinθ

已知ab属于R,求证a^2+b^2大于等于2a+2b-2

(a-1)²+(b-1)²≥0所以a²+b²-2a-2b+2≥0即a²+b²≥2a+2b-2

已知a,b属于R,a^2+b^2≤4,

给一个最简单巧妙的方法吧~你可以仔细琢磨琢磨,不大好想到的但如果掌握了这类方法,在不等式中举一反三的话将受益不少哦~我们借助|xy|≤(x^2+y^2)/2这个定理:因为|3a^2-8ab-3b^2|

已知a b属于R 比较a^a·b^b与(ab)^[(a+b)/2]的大小

(a^a*b^b)/(ab)^[(a+b)/2]=a^[(a-b)/2]*b^[(b-a)/2]=(a/b)^(a-b)/2当a小于b时,a/b小于1,(a^ab^b)/(ab)^[(a+b)/2]小

设a,b属于R

解题思路:均值不等式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p

数学不等式证明:已知a,b,c属于R,求证a^2+b^2>=ab+a+b-1.

a^2+b^2≥2abb^2+1^2≥2b1^2+a^2≥2a相加得:2(a^2+b^2+1)≥2(ab+a+b)两边同除以2:a^2+b^2+1≥ab+a+b移项即得:a^2+b^2≥ab+a+b-

已知a,b属于R,求证:a2+b2+5大于等于2(2a-b)

证明:∵a²-4a当a=2时有极小值(a²-4a)min=-4∴a²-4a≥-4【也可由(a-2)²≥0推出】同理b²+2b≥-1∴a²-4