基础解系和逆矩阵的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/25 03:56:10
基础解系和逆矩阵的关系
矩阵伪逆 与 矩阵共轭转置的关系

A^+=A^*(AA^*)^{-1}需要默认A行满秩类似地,A^+=(A^*A)^{-1}A^*要求A列满秩可以认为这就是满秩矩阵的Moore-Penrose逆的定义,当然对于不满秩的矩阵仍然需要用四

线性代数.已知最简行阶梯矩阵如何求基础解系?

x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R

线性代数,在基础解系部分,如果A是4×3的矩阵,则基础解系为3-r,如果A是3×4的矩阵的话,基础解系是多少,跟行数,列

基础解系所含向量的个数等于未知量的个数n减去矩阵A的秩.与行数列数没有关系的再问:为什么未知量的个数就是矩阵的列向量呢?再答:你把方程怎么样写成的矩阵再答:你自己想想

已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

第六题=.=线代大神进,关于基础解系和系数矩阵

A分成三行行向量b1,b2,b3有b1a1=0,b2a1=0,b3a1=0b1a2=0,b2a2=0,b3a2=0转置a1Tb1T=0,a1Tb2T=0,a1Tb3T=0a2Tb1T=0,a2Tb2T

这是书上例题的一道求矩阵的全部特征值和特征向量的题,但我不懂的是求基础解系的部分:

不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系

设矩阵A,则齐次线性方程组AX=0包含的基础解系的个数为?

A=1111243135244635r2-2r1,r3-3r1,r4-4r11111021-102-1102-11-->1111021-100-220000所以r(A)=3所以AX=0的基础解系含n-

opencv 矩阵 “ 矩阵的作用是什么 还用通道和矩阵有什么关系.她和图像有什么关系

矩阵是像素的集合,通道是指每个像素用几种基色(不知道这样描述准不准确)组成,一般由RGB组成,有的带有a(alpha).可以用cvSplit函数将3/4通道的图像的RGB(假设是RGB颜色空间)分离成

线性代数 矩阵求基础解系的问题

|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

矩阵转置和行列式的关系

转置一下,行列式不变.所以det(A)=det(A')但是A的行列式就已经是一个数了,数是没有转置这种运算的.

求矩阵的逆矩阵和证明矩阵可逆

(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆

求矩阵的运算法则和讲矩阵的基础的书(数学方面)

如果只是入门的话,推荐高等教育出版社出版的,同济大学数学教研室编的《工程数学线性代数》,这也是考研数学大纲推荐的教材.如果想深入学习,推荐王萼芳和丁石孙的《高等代数》.这是以前清华高等代数课程的教材.

怎么样判断一个向量组是不是一个矩阵的基础解系

向量组是AX=0的基础解系须满足:1.线性无关2.向量组中向量的个数=n-r(A)再问:那是不是所有满足你说的基础解系都是AX=0的解啊?再答:矩阵都是AX=0的解??什么意思?

矩阵的正交 基础解系方面的问题(有图)

基础解系没有必要正负,只需一个向量就可,有正负意思应该是正负都可成为基础解系.后面的单位向量当然都应有正负.再问:哦谢谢了,那请问考试的时候只写正负的其中一个有关系吗会扣分吗还有就是什么时候应该写正负

求矩阵A的特征向量时,那个基础解系a是怎么算出来的?

对某个特征值λ,解齐次线性方程组(A-λE)X=0

矩阵的基础解系怎么求?

A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX

特征值和可逆矩阵的关系

|A|=0说明A有特征值0,于是A的全部三个特征值为0,1,2则A^2的全部三个特征值为0,1,4,则-1不是A^2的特征值,于是|I+A^2|=-|-I-A^2|不等于零,于是A^2+I为可逆矩阵.