为什么数列1 lnn

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/05 18:28:00
为什么数列1 lnn
判断级数lnn/(n^2+1) 的敛散性

ln(n)=o(n),即ln(n)远小于n.而n/(n^2+1)~n/n^2=1/n收敛于0,因此ln(n)/(n^2+1)收敛于0.如果你要说的是级数求和的收敛性,也是收敛的.ln(n)=o(n^(

证明:ln2/3+ln3/4+ln4/5+...lnn/(n+1)

证:ln2/3+ln3/4+ln4/5+...lnn/(n+1)=(ln2-ln3)+(ln3-ln4)+(ln4-ln5)+...+[lnn-ln(n+1)]=ln2-ln(n+1)因n>1n+1>

求证:1/ln2+1/ln3+1/ln4+……+1/lnn>1/2

n>1,lnn>0,所以1/lnn>0,各项为正1

证明数列Xn=1+1/2+.+1/n-lnn收敛

先用单调性或者微分中值定理证明ln(n+1)-ln(n)>1/n然后应该会了吧

数学中对数运算1/ln2+1/ln3+…+1/lnN等于几,请写出过程!

最好用不锈钢的,还可以用玻璃的,但好像没有那么大容量的玻璃杯,要是想用塑料的话就用聚乙烯的,别的塑料一定不要用,都不赖高温的

数列Tn=ln1/1^2+ln2/2^2+ln3/3^2+.+lnn/n^2 求证Tn

楼上都对高中题吧这样题目稍微分析一下并不难(关键在于分析通项,如何放缩)也可以考察重要不等式ln(x+1)0即lnx1的简单运用,这个不等式有很多种证明方法(如构造函数利用单调性证明,学了微积分也可以

证明不等式:ln(x+1)≤1+1/2+1/3+.+1/n<1+lnn

证明:令f(x)=1/x,则f(x)在区间[n,n+1]上的最大值为f(n)=1/n,最小值为f(n+1)=1/(n+1).由定积分性质,得1/(n+1)即1/(n+1)所以1/21/3......1

判别级数∑(-1)^n*(lnn)^2/n的敛散性

/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x

(lnn)^1/n级数敛散性咋判断啊?

取对数lim(n→∞)ln(lnn)^1/n=lim(n→∞)ln(lnn)/n罗必塔法则=lim(n→∞)1/lnn*1/n/1=lim(n→∞)1/n*(lnn)=0所以(lnn)^1/n→1(n

∑lnn ∑(lnn分之1) ∑(lnn分之n)敛散性

首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零.反之,一般项的极限不为零级数必不收敛.这样,∑lnn、∑(lnn分之n)一般项的极限为无穷,必不收敛.若一般项的极限为零,则可选择某些正项级

∑1/[lnn^(lnn)], n∈[2,∞],求该式的敛散性

收敛的当n足够大时(lnn)^lnn>n^2因为当n趋于无穷大时limn^2/(lnn)^lnn=lim2n/((lnn)^lnn*(ln(ln(n))/n+1))=lim(2n/(lnn)^lnn)

正项级数1/n^2*lnn的敛散性

lnx的增长率永远比不上任何一个幂函数的增长率,所以lnn

求正项级数1/(lnn)^2的敛散性

n充分大时lnn^21/n而级数∑1/n是发散的所以该级数发散

高数:级数的敛散性 1/(lnn)^lnn

(lnn)^lnn=e^(lnn*lnlnn)=(e^(ln))^(lnlnn)=n^(lnlnn)>n^2,当n>9时,因此通项ann^2这个缩小是什么根据??再答:当n>e^9时,lnn>9,ln

∑ [(n+1)^lnn]/(lnn)^n 的敛散性

设an=[(n+1)^lnn]/(lnn)^n(an)^(1/n)=[(n+1)^(lnn/n)]/(lnn)n趋向于无穷大时(n+1)^(lnn/n)的极限为1因此n趋向于无穷大时,(an)^(1/

用比较判别法判断敛散性 ∑1/lnn

因(1/lnn)/(1/n)=n/lnn趋于无穷大,由比较判别法,级数发散

证明通项为lnn/n^4的数列前n项和<1/2e

数列的前n项和根据积分它的积分下限是1上限是n在这里+无穷比n大原式再问:。。看不懂。。什么根据积分吖再答:把原式的不定积分按照题意数列的前n项转化为定积分由无穷来替换积分的上限n我觉得说的很清楚了再

利用定积分定义求lim(n→∞)[(1/n)*lnn!-lnn]

原式=lim(n→∞)1/n(ln(1/n)+ln(2/n)+ln(3/n)+...+ln(n/n))=∫(0→1)lnxdx=xlnx|(0→1)-∫(0→1)dx=0-x|(0→1)=-1再问:1

求极限n【ln(n-1)-lnn】

以下各式省略lim(n→∞):n×[ln(n-1)-ln(n)]=n×ln[(n-1)/n]=n×ln(1-1/n)=ln[(1-1/n)^n]=ln{[(1-1/n)^(-n)]^(-1)}=1/{