为什么A可对角化,二重特征根可得r(2E-A)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/20 02:23:02
为什么A可对角化,二重特征根可得r(2E-A)=1
下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

方阵A满足A^2+A-I=0,证明:A可对角化

条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/

如果矩阵A可逆,则A可对角化.对不对

对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为

高等代数 线性变换A^2=E,证明A可对角化

只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±

矩阵可对角化的条件是什么

以下将内容局部复制下来,详见原网址.定理1阶矩阵可对角化的充分必要条件是有个线性无关的特征向量.若阶矩阵定理2矩阵的属于不同特征值的特征向量是线性无关的.推论1若阶矩阵有个互不相同的特征值,则可对角化

A为nxn的可对角化矩阵,证明:若B为任何和A相似的矩阵,则B可对角化

证明:设C是任意对角矩阵,且与A相似若B与A相似,根据相似具有传递性,即C则B与C相似,所以B可对角化再问:B与C相似所以B可对角化不是题目本身一个意思么只是把A换成了C?这样不算证明出来了吧...再

矩阵A平方=A,如何证明A可对角化啊?

因为A^2=A所以A的特征值只能是0,1再由A(A-E)=0所以r(A)+r(A-E)再问:若rankA+rank(A-E)=n,如何证明A可对角化呢?再答:n-r(A)+n-r(A-E)=n所以A有

矩阵A (A-aI)(A-bI)=0 证明A可对角化

这是个与矩阵的特征值,对角化,矩阵的秩有关的综合题目用到多个知识点,好题!证明:(1)(A-aI)(A-bI)=A^2-(a+b)A+abI若λ是A的特征值则λ^2-(a+b)λ+ab是A^2-(a+

怎么把可对角化矩阵对角化?

用特征多项式求特征值,求出的特征值为Λ的主对角元素也就是A的相似对角矩阵再问:不过不是对称矩阵才这么求吗??非对称的可以吗??再答:这吧是对称矩阵的求法,是一般矩阵都是这个求法,理解错了再问:那就是说

矩阵可对角化条件?

n阶方阵A可对角化A有n个线性无关的特征向量k重特征值有k个线性无关的特征向量

关于矩阵可对角化的问题

可以,这时A的极小多项式是P(x)的因子而P(x)无重根,故A可对角化

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

线性代数问题 一个矩阵若可对角化 那么 它的一个特征值若为k重特征根 则对应k个线性无关的特征向量

是的,而且在所有不同的特征值的所有线性无关的特征向量可以作为线性空间的一个基,这个基下矩阵可化为对角阵

可对角化矩阵一定可逆吗?

不一定,因为如果A的特征值中有一个或有几个为0时,很显然只要A的特征值的几何重数与代数重数一样的话,那么一定可相似对角化,而对角元素即为对应的特征值,此时A的行列式为0(A的行列式为其所有特征值的乘积

设A可逆矩阵且可对角化,证明A^(-1)也可以对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/

AB=BA A B 都可对角化,证明A+B可对角化

设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(

已知矩阵A可对角化,证明A的伴随矩阵也可对角化

证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1

关于矩阵可相似对角化的

要注意到一个特征值的线性无关特征向量的个数